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Abstract
In studies of animal space use, researchers often use kernel-based techniques for estimating the size of an animal’s home range
and its utilization distribution from radiotracking data. However, the kernel estimator is highly sensitive to the bandwidth value used.

Previous ecological studies recommended least-squares cross-validation (LSCV) as the default bandwidth selection method, but

some statisticians consider this technique inferior to newer methods. We used simulations to compare the performance of the

scaling LSCV and reference approaches to plug-in and solve-the-equation (STE) bandwidth methods. We generated samples of
20, 50, and 150 points from mixtures of 2, 4, and 16 bivariate normal distributions. We selected the ranges of potential variances for

these distributions to create 4 distribution types with varied levels of clumping to simulate the diversity of location patterns

expected from radiotracking data. For most distribution types, plug-in and STE methods performed as well or better than LSCV in

% absolute error of home-range size estimates and overlap of estimated and true utilization distributions. Although the relative
differences usually were small, the plug-in and STE approaches provide good alternatives to LSCV. However, LSCV performed

better with distribution types composed entirely of tight clumps of points. The reference bandwidth performed poorly for most

distributions. Surprisingly, it often had the lowest absolute error at outer contours for distributions consisting of a single very tight
cluster surrounded by more dispersed points. Although our results demonstrate the utility of plug-in and STE approaches, no

method was best across all distributions. Rather, choice of a bandwidth selection method may vary depending on the study goals,

sample size, and patterns of space use by the study species. In general, we recommend plug-in and STE approaches for estimating

relatively smooth outer contours. The LSCV approach is better at identifying tight clumps, including areas of peak use, although risk
of LSCV failure also increases when a distribution has a very tight cluster of points. When planning to use kernel methods,

researchers should consider these factors to make preliminary decisions about the bandwidth method expected to be most

appropriate in their study. (JOURNAL OF WILDLIFE MANAGEMENT 70(5):1334–1344; 2006)
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Wildlife studies frequently seek to estimate home-range size
and other aspects of animal space use based on locations
obtained with radiotelemetry. Compared to previous home-
range estimators such as the minimum convex polygon
(MCP) and bivariate-normal methods, kernel-density esti-
mation (Silverman 1986) offers lower bias (Worton 1995,
Seaman and Powell 1996, Swihart and Slade 1997) and
higher flexibility in handling complex location patterns
(Worton 1989, Seaman et al. 1999). Moreover, the kernel
method directly provides an estimated probability density
function (Silverman 1986) that corresponds to an animal’s
utilization distribution (UD; Van Winkle 1975, Worton
1987, Kernohan et al. 2001). The UD measures the intensity
or probability of use throughout an animal’s home range,
allowing calculation of home-range area within any desired
probability contour. In addition, recent studies have recom-
mended the use of kernel-estimated UDs to measure joint
space use of multiple animals (Seidel 1992, Millspaugh et al.
2004, Fieberg and Kochanny 2005) and to evaluate resource
selection (Marzluff et al. 2001, 2004), expanding the utility of
the kernel method for animal-movement studies.
However, the kernel approach is highly sensitive to the

choice of bandwidth values (smoothing parameters; Silver-
man 1986, Seaman et al. 1999, Kernohan et al. 2001). The

bandwidth determines the relationship between the distance
of a used location from an evaluation point on the landscape
and the contribution of the location to the density estimate
at that point. An excessively large bandwidth value produces
an overly smooth estimated UD, which overestimates home-
range size (Kernohan et al. 2001). Conversely, with very
small bandwidths, the UD may fragment into numerous
components, producing negatively biased estimates. Biolo-
gists desire an objective method of bandwidth selection that
they can automatically apply to numerous sets of locations
and that usually provides the most accurate estimates of the
parameter of interest.
Previous ecological studies (Worton 1995, Seaman and

Powell 1996, Seaman et al. 1999, Kenward et al. 2001,
Gitzen and Millspaugh 2003) evaluated 3 general methods
for selecting the bandwidth values: the normal or reference
method (REF), the scaled-REF approach in which the
REF-selected value (hREF) is multiplied by a fixed
proportion (e.g., 0.8 3 hREF), and the least-squares cross-
validation (LSCV) method. The REF method performs
poorly except for unimodal distributions (Seaman et al.
1999, Gitzen and Millspaugh 2003). The scaled-REF
approach depends on ad hoc choice of the appropriate
scaling factor (Worton 1995). In contrast, LSCV avoids
such potentially subjective choices, and has much lower bias
than REF when used with complex UDs. Therefore,
ecological studies and many home-range-estimation soft-
ware programs recommend LSCV as the default bandwidth
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method (Seaman and Powell 1996, Kie et al. 1996, Hooge
and Eichenlaub 1997, Seaman et al. 1998, 1999).
In contrast, some statisticians consider plug-in and solve-

the-equation (STE) techniques to be far better default
selection methods than LSCV (Wand and Jones 1995, Jones
et al. 1996a,b). The LSCV method has high sampling
variability (Wand and Jones 1995) and a tendency to choose
low bandwidth values that produce a fragmented UD (Kie et
al. 1996, Blundell et al. 2001, Kernohan et al. 2001). Plug-in
and STE methods reduce sampling variability. However,
they often oversmooth slightly (Wand and Jones 1994,
Loader 1999a). If the true distribution is highly fragmented,
seemingly low values of hLSCV may reflect the distribution
accurately, whereas the newer methods are likely to choose
large bandwidths that smooth over the true narrow peaks
(Loader 1999b). Therefore, Loader (1999a) argues that
LSCV should be the preferred bandwidth method. Space-
use studies have used plug-in and STE methods (Roloff et
al. 2001, Amstrup et al. 2004), but more extensive
comparisons with LSCV are needed, particularly given the
disagreement among statisticians regarding which ap-
proaches are best.
We compared the performance of plug-in and STE

approaches to LSCV and REF. Our purpose was to
determine how these methods compare across various
distributions and sample sizes. Using simulations, we
assessed the performance of these bandwidth methods for
fixed-kernel estimation of space use with sample sizes typical
of Very High Frequency (VHF) transmitter studies. We
compared how well each method estimated home-range size
at the 0.95 and 0.25 probability contours and examined the
general overlap of estimated and true distributions.

Methods
Simulations
Similar to previous studies (Boulanger and White 1990,
Seaman and Powell 1996, Seaman et al. 1999), we used
mixtures of bivariate normal distributions to model animal
location patterns. By varying the degree of clumping of
simulated locations, we created distribution types that would
approximate a range of real UDs. Our simulations followed a
43 33 3 factorial design, with factors of distribution type
(general, partially clumped, all clumped, nest tree), number of
component normals (2, 4, 16), and sample size (20, 50, 150).
For each bivariate normal distribution in a mixture, we

chose the x- and y-variance parameters separately from a
uniform distribution with a range that depended on the
distribution type. By modifying this range, we created 4
distribution types intended to represent animals that 1) use a
home range with relatively broad areas of higher activity
(general ), 2) forage broadly but have a few patches of much
higher use (partially clumped), 3) focus intensively on
localized patches without spending much time in between
these patches (all clumped), or 4) use a broad home range, but
with a single small patch of highly concentrated use (nest tree).
After examining preliminary point sets generated from

bivariate normal mixtures, we established the following
ranges for the variances to produce these 4 general
distribution types (Fig. 1). For the general distribution

type, we randomly chose the variance for each coordinate in
each normal in the mixture between 1 and 36, as in Seaman
et al. (1999). For the partially clumped type, we chose half of
the normals in the mixture as in the general type, and we
chose the variances for the other normals in the interval (0.5,
5). For the all-clumped type, we chose all normals in the
mixture with variances in (0.5, 5). Finally, for the nest-tree
type, we chose one bivariate normal with variances in (0.1,
0.4) and we chose the other bivariate normals as in the
general class. For all types, we used a correlation value
generated from the uniform distribution in ("1, 1) to
calculate the covariance rx,y for each bivariate normal. For
the mixing proportions in the general, partially clumped,
and all-clumped distribution types, we chose values from the
uniform distribution between 0 and 1, and then rescaled
these values to produce mixing proportions that summed to
1. For the last type, we assigned the nest-tree cluster a
mixing proportion of 0.33, and the other bivariate normals
in the mixture had randomly chosen proportions constrained
to sum to 0.67. For all types, we chose the x- and y-mean
parameters separately for each bivariate normal from the
uniform distribution between 0 and 20.
The number of component normals partially determined

the complexity of the mixtures, producing relatively simple
(mixtures of 2 normals) or complex (4 and 16 normals)
distributions. We chose the 3 focal sample sizes to
determine whether the relative performance of the band-
width methods changed between levels considered to be
inadequate (20), minimally adequate (50), and large (150),
respectively, for kernel estimators in home-range studies
that use VHF transmitters (Seaman et al. 1999). We
rounded point locations generated from each distribution to

Figure 1. Examples of point patterns from 4 types of mixture
distributions used for bandwidth-comparison simulations. Each plot
shows 150 points generated from mixtures of 4 bivariate normal
distributions for each distribution type.
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4 decimal places to mimic the degree of discretization
present in real data sets. We examined estimated locations of
elk (Cervus elaphus) in South Dakota (Millspaugh et al.
2000) to decide on the degree of rounding.
Researchers apply home-range estimators to a diversity of

species and location patterns. Therefore, we focused on
comparative bandwidth performance across a large number
of distributions with randomly chosen parameters, rather
than exploring a more limited set of distributions in detail.
We performed 500 replications per combination of
distribution type, number of normals, and sample size. For
each replication, we selected a new mixture distribution,
generated a random sample of points from this distribution,
and calculated bandwidth values. Overall, we generated
18,000 utilization distributions.

Kernel and Bandwidth Calculations
We limited our comparisons to a subset of the numerous
general variations of the kernel method. Here, we briefly
describe some options and the specific forms we chose. First,
the bandwidth can remain constant for all data points (fixed
kernel), or vary depending on the number of nearby
observations (adaptive kernel). We focused on the fixed-
kernel method, which generally has lower bias at outer
contours of the home range and better surface overlap
(Seaman et al. 1999), at least compared to the form of the
variable-kernel approach implemented by Seaman and
Powell (1996). Second, for bivariate data the bandwidth
can be composed of a single value, which applies the same
amount of smoothing to each coordinate; 2 values to smooth
differently along the x- and y-axes; or 3 values (a bandwidth
matrix) to allow smoothing along rotated coordinate axes
(Wand and Jones 1995). We considered only bandwidths
composed of separate values for the x- and y-coordinates,
partially for computational ease. Third, different kernel
functions are available, but are likely to perform similarly.We
used a normal kernel for all calculations (Silverman 1986:43).
Several bandwidth selection methods, including LSCV,

plug-in, and REF, have both univariate and bivariate (or
generally multivariate) versions. The STE method has only
a univariate version. For bivariate data, an alternative
strategy to using the bivariate version of these methods is
to apply the univariate version separately to the x- and y-
data vectors to produce the bandwidth vector (hx, hy).
Because STE performs well for univariate data (Wand and
Jones 1995, Jones et al. 1996a, Venables and Ripley 2002),
applying it separately to the x- and y-vectors may be a viable
strategy for bivariate data (e.g., Roloff et al. 2001). We
considered STE and both the bivariate plug-in (PI2d) and
the univariate plug-in (PI1d). We did not include the
univariate LSCV approach because its performance is
similar to or worse than bivariate LSCV approaches (Gitzen
and Millspaugh 2003).
All bandwidth methods we considered estimate the value

that minimizes the discrepancy between the estimated and
true distribution. The plug-in approach ‘‘minimizes the
[error] function theoretically and then estimates this
minimizing value directly’’ (Bowman and Azzalini

1997:35). The equation for the minimum contains functions
of the unknown density. The plug-in approach uses pilot
bandwidths to estimate these function values, and the
estimates are ‘‘plugged in’’ to the equation for the ideal
bandwidth. The STE method follows a strategy similar to
the plug-in method. It assumes that the bandwidths used to
estimate a function of the unknown density can be scaled as
a fixed proportion of the ideal bandwidth (Venables and
Ripley 2002), which is estimated with an iterative loop.
We used a 2-stage approach for the plug-in and STE

calculations (Appendix). The univariate plug-in (PI1d) and
STE methods followed the steps of Wand and Jones (1995).
Ćwik and Koronacki (1997) noted that a univariate
bandwidth method requires modification when applied
separately to each vector of a multidimensional data set.
For bivariate data, they raised each coordinate bandwidth to
the 0.833 power. Our trial simulations indicated that for
both PI1d and STE, this transformation increased overlap of
true and estimated distributions, and we used this approach
for all simulations. The bivariate plug-in method (PI2d)
followed the steps of Wand and Jones (1994).
In addition to PI2d, PI1d, and STE, we calculated the

reference bandwidth (REF) and 2 variants of LSCV. The
reference approach estimates the optimal bandwidth by
assuming data come from a normal distribution, producing
an estimate based simply on the sample size and standard
deviation for each coordinate of the observations. We
calculated REF as in Seaman and Powell (1996): hREF ¼
n"0.167 3 (rx, ry)¼ (hx, hy), where n equals the number of
locations. The LSCV method uses a resampling, cross-
validation approach to estimate the bandwidth that
minimizes error between true and estimated distributions.
We calculated the LSCV bandwidth with the scaling
approach (Silverman 1986, Wand and Jones 1993) used by
Seaman and Powell (1996). We standardized data for both
coordinates to have unit variances, we minimized a score
function based on a single value of h, and we multiplied h by
the unscaled standard deviations for each coordinate vector
to produce (hx, hy). For home-range estimation, this
approach is similar to several other LSCV variants (Gitzen
and Millspaugh 2003).
The LSCV approach minimizes a score function within a

suitable interval, typically with the upper and lower bounds
of the search interval set to fixed proportions of hREF for the
data set (Silverman 1986). In some cases, the score function
may descend smoothly to the lower bound of the search
interval, indicating failure of the LSCV method (unless the
lower bound was too high). The score function may have
multiple local minima, and statisticians recommend using
the largest local minimum (i.e., the largest bandwidth at
which there is a local min. in the score function) instead of
the global minimum (Wand and Jones 1995). However,
previous simulations indicated that this issue is unimportant
for distributions without strongly clumped components
(Gitzen and Millspaugh 2003). We included both the global
(LSCVgm) and largest local minimum (LSCVllm) for
comparison across the wider range of point patterns
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considered here. We looked for the global minimum in the
score function by directly searching over 300 possible
bandwidth values equally spaced in the search interval (0.1
3 hREF, 23 hREF ). Although relatively inefficient compared
to algorithms such as the ‘golden search’ method used in
home-range software (e.g., Hooge and Eichenlaub 1997),
our strategy was suitable for automatic application to
thousands of simulated data sets and facilitated the search
for local minima at bandwidths larger than the global
minimum. For each score value, we calculated the difference
score(i )" score(i"1). We took the largest bandwidth value for
which this difference was negative as the largest local
minimum. When the minimum value of the score function
was at a boundary of the search interval, we classified this as
failure of the LSCV method, but set the bandwidth equal to
hREF for both LSCVgm and LSCVllm.
We wrote functions to calculate bandwidth values and

perform all other simulation steps in MATLAB 5.3
(MathWorks 1999). We used Beardah and Baxter’s (1995)
and Bowman and Azzalini’s (1997) bandwidth functions as
references. We used a function from Beardah and Baxter
(1995) to calculate kernel-density estimates.

Bandwidth Comparisons
For each replication, we calculated the true mixture density
and the estimated fixed-kernel density for each bandwidth
value across a fine-scale grid (231 3 231, or 53,361 grid
points, for the general, partially clumped, and all-clumped
distributions; 251 3 251 for the nest-tree type). For all
distributions, the evaluation grid covered the square region
within the interval ("20 $ x $ 40, "20 $ y $ 40). Trial
simulations indicated that the 2313 231 grid was adequate
for calculating density values at peaks in the true UD for all
distributions, except the nest-tree type. We needed a finer
grid to ensure complete coverage of the narrow nest-tree
peak in the UD. To compare how bandwidths performed at
outer and inner UD contours, we calculated the areas within
the 0.95 and 0.25 probability contours for the true
distribution and for the distributions estimated from the 6
bandwidth methods. We focused on these contours because
researchers commonly use the 0.95 contour for calculating
home-range size, while the 0.25 contour encompassed
portions of the home range with highest use.
For each replicate, we calculated absolute percent error

between the true and estimated areas for each contour level,
defined as 1003 [absolute value (estimated home-range size
" true home-range size)]/true size. Both the accuracy and
precision of the estimator affected this metric. For the 0.95
contour, we also calculated percent relative error, defined as
[100 3 (estimated size " true size)]/true size. To measure
the overall fit of estimated and true distributions, we used
the Volume of Intersection Index (Seidel 1992, Millspaugh
et al. 2000, 2004):

VI ¼ 100%3
Z 40

"20

Z 40

"20
min f1ðx; yÞ; f̂ 2ðx; yÞ

! "
dx dy;

where f1 is the true mixture distribution and f̂ 2 is the
estimated distribution. The VI statistic is bounded between

0 (i.e., no overlap of the distributions) and 100 (complete
overlap). We used the VI Index because it gives an intuitive,
readily interpretable summary of both the overall perform-
ance of a bandwidth method and the practical importance of
differences among bandwidth methods in distribution
overlap. To obtain the VI Index value, we estimated the
shared probability mass (volume of overlap) within each cell
of the evaluation grid, and then summed these volumes. The
limits of the evaluation grid ("20, 40) contained 0.995–1.00
of each UD’s volume. Including areas with little or no use
does not change the VI Index because these areas contribute
nothing to the shared volume of overlap.
Many simulation runs contained a few extremely high error

values. Therefore, we reported medians for absolute error
values at the 0.95 and 0.25 probability contours, and used
bootstrapping (Efron and Tibshirani 1993) to estimate
standard errors of medians. We calculated 10,000 bootstrap
samples in S-PLUS 2000 (Mathsoft 1999) from the 500
replicates in each combination of design factors. For relative
error at the 0.95 probability contour, we calculatedmedians by
distribution type and sample size, pooled across the number-
of-normals factor. The VI scores were relatively symmetric
without values close to 0 and 100, and we reported means and
observed standard errors of means for this measure.
For LSCV, we counted how frequently there was a local

minimum larger than the global minimum. For replicates in
which we found a larger local minimum, we computed the
average pairwise difference (LSCVgm " LSCVllm) in
absolute error and VI scores. We used means rather than
medians for these differences because their distribution was
relatively symmetric and without extreme values. Because
LSCVgm and LSCVllm were rarely different, and because
home-range software programs likely use the global
minimum approach, we presented only results for LSCVgm

in comparisons with other bandwidth methods.

Results
Overall Patterns
For all bandwidth methods, absolute error increased from
the 0.95 to 0.25 contours and with decreasing sample size
(Figs. 2, 3). Absolute error increased as the tightness of
clustering for some components of each mixture increased
(i.e., from general to partially clumped to all-clumped and
nest-tree types). For example, when averaged across all
combinations of sample sizes and number of normals, the
median absolute error ranged from 23% (general) to 71%
(nest-tree) for LSCV, and from 18% (general) to 48% (all-
clumped) for PI2d. Absolute error was high at the 0.25
contour for the nest-tree type, with median absolute error
values exceeding 1,000% for REF. Distribution complexity
(no. of normals) had minor effects on bandwidth perform-
ance for the general and partially clumped types, with
median absolute errors for LSCV, plug-in, and STE
methods varying by 1–5% among the complexity levels.
For the all-clumped and nest-tree types, absolute error of
these bandwidths varied by 4–45% among complexity levels.
All bandwidths produced positively biased estimates of

home-range size at the 0.95 contour, except LSCV for the
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partially clumped type, STE with a sample size of 20 for the
general and partially clumped types, and LSCV, plug-in
methods, and STE for the nest-tree type (Table 1). Relative
and absolute error did not decrease uniformly with increasing
sample size, particularly for the plug-in and STE approaches.
For the general and partially clumped distribution types,
median relative errors of plug-in and STEmethods increased
by 1–10% when sample sizes increased from 20–150.
However, absolute error of these methods decreased by 8–
20% with this increase in sample size. The average overlap of
estimated with true distributions, as measured by the VI
scores, increased consistently by 6–7% with each increase in
sample size (i.e., from 20 to 50 and from 50 to 150; Fig. 4).
Overlap scores were high, with average scores between 60–
80% for the general, partially clumped, and all-clumped
distributions. Overlap decreased as clumping increased, with
the nest-tree distribution having average VI scores for each
bandwidth method that were lower by 14–25% than
corresponding VI scores for the general type.

All Bandwidths
The distribution type substantially affected the comparative
performance of the bandwidth methods we evaluated. For
the general and partially clumped types at the 0.95 contour,

the plug-in and STE bandwidths produced median absolute
error values 5–10% lower than LSCV on average (Fig. 2).
At the 0.25 contour, plug-in and STE methods had absolute
error values that were 5–15% lower than LSCV for the
general type but 6–30% higher than LSCV for the partially
clumped distributions (Fig. 3). At sample sizes of 50 and
150 with the all-clumped distributions, LSCV had median
absolute error values that were 8–25% lower on average than
the plug-in and STE methods at the 0.95 contour, and 14–
39% lower at the 0.25 contour. At the 0.95 contour of the
nest-tree distributions, LSCV produced median absolute
error values 27–46% higher than other methods. At the 0.25
contour of the nest-tree type, LSCV had high overall
median absolute error (140%), but plug-in and STE
methods had absolute error values 3–5 times higher. In
contrast, REF had the lowest median absolute errors for the
nest-tree type at the 0.95 contour, but produced error values
of 600–3,700% at the 0.25 contour. For other distribution
types, REF had median absolute and relative error values
that were at least twice as high as other bandwidth methods
at the 0.95 contour (Figs. 2, 3).
For overlap scores, the relative rankings of all bandwidth

methods were similar to the patterns for outer home-range
contours, but the magnitudes of differences were much

Figure 2. Median (61 SE) absolute percent error in home-range size estimates for the 0.95 probability contour by bandwidth method, distribution
type (general, partially clumped, all-clumped, nest-tree), number of normals in the mixture distributions (2, 4, 16), and sample size (20, 50, 150).
Values are from 500 mixture distributions for each combination of distribution type, number of normals, and sample size. For each replicate, we
calculated absolute percent error as absolute value [(estimated size" true size)/true size3 100]. We bootstrapped each set of 500 replicates with
10,000 re-samples to estimate standard errors of the medians. Median error values exceeding 100% are set to 100%. Where error bars are not
visible, they are smaller than the symbol for the median. Symbols:¤¼Reference method; n¼Least-squares cross-validation, global minimum;m¼
Bivariate plug-in; ! ¼ Univariate plug-in;3¼ Solve-the-equation.
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smaller with the VI Index (Fig. 4). The overall similarity
among the bandwidth methods in overall overlap also was
indicated by the relatively low variability of the 6 VI scores
(i.e., one score for each bandwidth method) for each
replicate. For example, across all 18,000 replicates, the
average within-replicate coefficient of variation was 74% for
absolute error at the 0.95 contour and 76% at the 0.25
contour, but only 7% for the VI Index. Average differences
in VI scores between LSCV versus plug-in and STE
methods were only 1–2% for the general, partially clumped,
and all-clumped distributions. However, for the nest-tree
type, LSCV had VI scores 5–8% lower than the plug-in and
STE methods. For the general distribution type, the REF
method had VI scores only 1–3% lower, on average, then the
other methods. With partially and all-clumped distribu-
tions, REF did worse, producing average VI scores that were
3–16% lower than the LSCV, plug-in, and STE methods.

Least-Squares Cross-Validation
Both LSCV options failed at the same rates, 13% for the
nest-tree distribution (572/4,500, pooled across other
factors), but only 0.3% (41/13,500) for the other distribu-
tions. Failure rate increased with increasing sample size,
with 92, 192, and 329 failures for sample sizes of 20, 50, and
150, respectively (6,000 replicates per sample size). Sim-
ilarly, failure rate increased with more complex distributions,

with 71, 192, and 350 failures for mixtures of 2, 4, and 16
normals (6,000 replicates each).
A local minimum larger than the global minimum was

present rarely (0.4% of simulations, 78/18,000). A larger local
minimum occurred at similar rates across the distribution
types (summed across all sample sizes and no. of normals: 26
cases for general, 20 for partially clumped, 17 for all-

Table 1. Median percent relative errora for 0.95 probability-contour
home-range size estimates by bandwidth method, distribution type, and
sample size (n).

Distribution type n REFb LSVGgm PI2d PI1d STE

General 20 41.1 26.2 10.1 3.7 "3.5
50 37.3 15.1 15.1 7.6 3.6

150 31.2 7.1 14.4 9.2 6.7
Partially clumped 20 62.2 0.7 10.2 8.6 "4.6

50 56.8 "7.4 14.9 11.7 1.8
150 45.0 "10.0 11.3 8.6 2.6

All-clumped 20 150.9 40.7 58.3 67.0 42.8
50 133.8 17.8 49.6 53.0 38.0

150 111.6 10.5 37.4 38.4 28.5
Nest-tree 20 13.1 "74.5 "34.9 "30.2 "46.6

50 20.0 "74.1 "26.3 "25.3 "44.2
150 19.6 "63.6 "22.1 "21.6 "40.6

a Results summarize 1,500 replications for each combination of
distribution type and sample size.

b REF ¼ reference method; LSVGgm ¼ least-squares cross-
validation, global minimum; PI2d¼ bivariate plug-in; PI1d¼ univariate
plug-in; STE ¼ solve-the-equation.

Figure 3. Median (61 SE) absolute percent error in home-range size estimates for the 0.25 probability contour by bandwidth method, distribution
type, number of normals in the mixture distributions, and sample size. Medians exceeding 1,000% are set to 1,000%. Symbols: ¤ ¼ Reference
method; n¼Least-squares cross-validation, global minimum; m¼Bivariate plug-in; !¼Univariate plug-in;3¼Solve-the-equation. See Figure 2 for
additional information.
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clumped, 15 for nest-tree) and more frequently with complex
distributions (2 normals: 21 cases; 4 normals: 16 cases; 16
normals: 41 cases). We found a larger local minimum mainly
at small sample sizes (sample size of 20: 61 cases; 50: 15 cases;
150: 2 cases). When a larger local minimum was present, it
produced worse estimates at the 0.95 home-range contour for
the 78 simulations in which the 2 differed (average difference
in absolute error, global" largest local min.,¼"31%, SE¼
8), but better overall distribution overlap (average difference
in VI scores¼"6.5%, SE¼ 1.2).

Discussion
Our results indicate that plug-in and STE methods perform
as well as or better than LSCV except with distributions
composed of multiple tight clumps. The plug-in and STE
methods perform much better than REF except with UDs
dominated by a single peak area of high use. Researchers
frequently should consider using these newer methods in
kernel analyses, and home-range software packages should
make these methods available. However, overall differences
between these methods and LSCV are much lower than we
expected. Moreover, no bandwidth method that we
considered outperforms the other methods in all situations,
at least for sample sizes typical of VHF-telemetry studies.
An important advantage of plug-in and STE methods is

that they avoid some complications of LSCV. The LSCV
method often chooses low bandwidth values, causing the

estimated UD to break into numerous fragments even when
the true distribution is much smoother (Kie et al. 1996,
Blundell et al. 2001, Kernohan et al. 2001). The LSCV
method sometimes does not provide meaningful bandwidths.
For some data sets, particularly when discretization is
significant and numerous data points have the same or
nearly the same values, the LSCV score function may have a
minimum only at a bandwidth value of zero (Silverman 1986,
Hooge and Eichenlaub 1997, Seaman et al. 1998), indicating
that the method has failed. Moreover, our results probably
underestimate this advantage; failure of LSCV may occur
more frequently with real data than in our simulations (Tufto
et al. 1996, Seaman et al. 1998, Linders 2000, Blundell et al.
2001). When LSCV fails for numerous location sets, the
analyst must choose an ad hoc or subjective solution or use
methods with higher bias. For example, the researcher may
use hREF, an arbitrary scaling of hREF (Worton 1995), add
random noise to identical locations to get a sensible LSCV
answer (Tufto et al. 1996), or switch to another, potentially
inferior, home-range estimation technique such as the
minimum convex polygon method. Plug-in and STE
approaches provide a valuable alternative in this situation.
Comparative performance of bandwidthmethods depended

on the distribution type and, to a lesser extent, on the
distribution complexity and sample size. In many radio-
tracking studies, biologists planning to use kernel methods
should choose a bandwidth selectionmethod a priori based on

Figure 4. Average Volume of Intersection scores measuring overlap of estimated with true distributions by bandwidth method, distribution type,
number of normals in the mixture distributions, and sample size. A score of 100 would indicate perfect overlap of the estimated and true distributions.
Standard error bars are too small to display (average SE ¼ 0.3, range ¼ 0.1–0.7). Symbols: ¤ ¼ Reference method; n ¼ Least-squares cross-
validation, global minimum; m ¼ Bivariate plug-in; !¼ Univariate plug-in;3¼ Solve-the-equation.

1340 The Journal of Wildlife Management ! 70(5)



expected characteristics of the animal’s space use and the goals
of the study. For example, if the species under investigation
forages widely across much of its home range, the researcher
should use plug-in or STE methods. These methods are the
best default choice when a researcher wishes to identify
smooth outer boundaries. For example, in studies that
examine resource selection within the general home-range
area (use vs. availability), the researcher seeks to delimit a
broader area that includes patches of high and low use. In
addition, the tendency of the newer methods to oversmooth
slightly throughout the distribution makes them intuitively
appropriate if there is relatively high error associated with all
estimated locations. For example, in mountainous terrain,
radiotelemetry locations estimated by triangulation may have
large error polygons (White and Garrot 1990:54, 69), and
moderate oversmoothing seems appropriate.
In contrast, if the focal species spends most of its time

visiting small patches of resources and the study focuses on the
area of these clumps, LSCV methods should be the default
choice if kernel estimation is used. However, even this
recommendation must be qualified. As the degree of
clumping increases and clusters begin to contain multiple
nearly identical locations, LSCV will fail more frequently.
Researchers need further simulations to compare LSCV-
based kernel estimators with linkage methods (Kenward et al.
2001) for examining use of discrete patches and core areas.
Kenward et al. (2001) noted the risk of circular verdicts
against linkage estimators in simulation studies. Data
generated from smooth, continuous distributions may better
match the statistical models used by kernel-density estima-
tors.When UDs have rigid boundaries or edges between used
and unavailable areas, or holes of unusable areas surrounded
by used patches, unmodified fixed-kernel estimators may
estimate high space use in unavailable areas (Getz and
Wilmers 2004). However, we obtained realistic distributions
even with bivariate normal mixture distributions. For
example, the point patterns we generated could have relatively
sharp boundaries between simulated used and unused areas
(Fig. 1). Implementation of boundary kernels that handle
edge effects (Müller and Stadmüller 1999) or recently
developed variable-kernel approaches (Sain 2002)may extend
the flexibility of kernel approaches for space-use analyses.
For species that forage widely but spend much of their

time at a single den or nest, the reference bandwidth may be
the best choice for estimating home-range size at outer
probability contours if the nest-tree locations are included in
the analysis. The dominant feature of our nest-tree
distribution was a single sharp peak, which probably drove
the good performance of REF at outer contours of this type.
If an animal uses more than one den or nest tree in different
parts of its home range, the resulting distribution will have 2
or more sharp peaks, and REF would perform poorly
compared to plug-in or LSCV methods.
Further complications arise when animals within a single

study show different degrees of clustering in their locations.
For example, in many polygynous species during the
breeding season, females may focus activity around the nest,
but adult males may prospect widely for mates. In this case,
use of a single bandwidth method could produce good
estimates for one sex but biased estimates for the other sex.

If study animals show such disparate patterns of movements,
we recommend the use of different bandwidth methods to
produce the best estimate for each study sub-population.
Within the same study, different bandwidth methods could
be appropriate for different study components. Even with a
tightly clumped pattern of locations, use of plug-in or STE
methods may be appropriate to identify broader areas for
examining resource selection, while LSCV could produce
the best estimates of home-range size and identify discrete
patches of high use.
Differences among bandwidths are most important when

estimating home-range size. Choice of bandwidth method
usually had minor effects on VI scores, a pattern noted for
REF and LSCV by Seidel (1992) when she developed the VI
Index. Similarly, surface fit was similar for REF and LSCV
with both fixed and adaptive kernels in simulations of Seaman
et al. (1999). In our simulations, all bandwidth methods
produced estimated distributions that matched most of the
true UD’s volume, as indicated by the high VI scores.
This study focused on broad-scale comparisons of band-

width methods across a large number of randomly selected
distributions. Additional insight would be gained from
detailed examination of how bandwidths perform in different
parts of each distribution (e.g., at the UD peak) and for
specific distributions with purposely selected parameters
(e.g., Jones et al. 1996a, Loader 1999b). Detailed examina-
tion could help explain some counter-intuitive patterns we
observed. For example, bandwidth performance often was
better with mixtures of 16 normals than with 4 normals.
Mixtures of 16 normals often may have been less complex,
particularly in cases where the means of many of the normals
were close together and produced a single broader peak.
Our results apply to VHF-based telemetry studies in which

a large sample size consists of 150 locations per animal. In
contrast, studies using Global Positioning System collars and
satellite telemetry routinely can collect thousands of
observations per animal. We recommend additional exami-
nation of bandwidth selection methods and broader kernel-
analysis options in the context of such data-rich studies.
With such large data sets, efficient computation is essential
(Kern et al. 2003). Reasonably, researchers might assume
that choice of bandwidth method would be unimportant at
such large sample sizes if all methods converged on an
estimate of the ideal bandwidth. However, Amstrup et al.
(2004) described poor performance of LSCV when applied
to thousands of observations in a satellite-telemetry study of
polar bears (Ursus maritimus). As the number of locations
increases, clusters of observations at the same or nearly the
same locations are likely. In this situation, the tendency of
LSCV to fail may be exacerbated at large sample size. For
example, the LSCV method failed most frequently at the
highest sample size we evaluated (150). Most of these
failures occurred with the nest-tree distribution, which
would have a large number of nearly identical points in the
nest-tree cluster. Similarly, we expect that the REF method
would not improve greatly at high sample sizes. Assuming
that the true UD was multimodal, a high number of
observations would delineate the multiple peaks of use more
clearly. Counter-intuitively, the advantage of plug-in and
STE methods may increase at such high sample sizes.
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We expect that our comparative rankings of the band-
width methods would carry over to the adaptive-kernel
method implemented by Seaman and Powell (1996). This
approach uses pilot fixed-kernel bandwidth estimates
(Silverman 1986) that are then adapted to account for local
point distributions. Choice of bandwidth method used for
estimating these pilot bandwidths might be less important
than in fixed-kernel estimation. However, LSCV performed
much better than REF for both fixed and adaptive kernels in
Seaman et al. (1999). We recommend additional research to
examine whether patterns we observed hold true for this and
other forms of a variable-kernel approach (Silverman 1986).
Several refinements of the plug-in and STE methods could

increase their accuracy and precision.We considered only a 2-
stage approach for each method; adding a third stage likely
would enhance performance at the cost of additional
computing time. For calculating pilot bandwidths, we used
scale estimates (standard deviation for the univariate versions,
covariance matrix for the bivariate plug-in), that outlier
locations influence strongly. Researchers should evaluate a
more robust scale estimate (Wand and Jones 1994). Finally,
calculation of 3 bandwidth values to allow smoothing away
from the coordinate axes could provide additional improve-
ments (Duong and Hazelton 2003, Amstrup et al. 2004).
Combined with more fundamental options, such as the
choice between fixed and adaptive kernels, and other subtle
options, such as the choice of the kernel function, these
considerations lead to a bewildering number of variations
on the kernel method. As with variants of the LSCV
method (Gitzen and Millspaugh 2003), many of these
options may have little effect on average estimator
performance. However, even relatively unimportant varia-
tions still may contribute to variability of estimates among
home-range studies and software packages.
Faced with choosing among these options and dealing

with bandwidth selection uncertainty, a researcher might
consider switching to a simpler method, such as the MCP
approach. In most cases, this decision is not justifiable.
Previous techniques such as the MCP method may be useful
for some studies depending on the objectives, but they
generally have higher bias, lower comparability, and greater
sample-size dependence than any form of the kernel method
discussed above (Kernohan et al. 2001).

Management Implications
When using the kernel approach to summarize animal space
use, ecologists should be aware that bandwidth selection
could have a large effect on estimates and the resulting
biological conclusions. The goal of having a single automatic
selection method that works best in any situation probably is
not obtainable. Rather, ecologists should recognize that
there is high uncertainty in selecting the appropriate
bandwidth value. They should carefully consider their
analysis options before conducting studies (Kenward et al.
2001, Kernohan et al. 2001), and they should chose a
specific bandwidth method a priori based on study goals and
the expected distribution patterns of locations. Moreover, in
a study that uses the kernel method, investigators should
examine whether the biological conclusions of their studies
change depending on whether LSCV or one of the plug-in
or STE bandwidth methods is used.
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Appendix: Summary of Plug-In and Solve-
the-Equation Bandwidth Calculations

Overview
Both plug-in and STE approaches use an estimator for the
ideal (error-minimizing) bandwidth. This bandwidth de-
pends on a density functional, a function of the true density
and its derivative. These methods calculate this functional
with a kernel estimator that requires a suitable bandwidth.
This bandwidth in turn depends on a higher derivative
functional. A kernel estimator calculates this functional, but
this estimator requires yet another suitable bandwidth value.
Researchers could repeat these steps for multiple stages; at
each stage, the bandwidth depends on a higher derivative
functional with a more preliminary bandwidth estimate. The
2-stage PI and STE approaches calculate a preliminary
bandwidth based on the sample standard deviation (for
univariate approaches) or covariance matrix (for the bivariate
plug-in approach). This preliminary bandwidth is plugged
into a functional that allows estimation of the first-stage
bandwidth, which in turn is plugged into a lower-derivative
functional. This estimates a second-stage bandwidth. A
functional uses this bandwidth to estimate the final
bandwidth. The plug-in methods calculate this final
bandwidth analytically. In the STE approach, the final
bandwidth is still a function of itself, but a simple iterative
search finds the final bandwidth.

Univariate Plug-In
For the univariate plug-in approach, we followed the steps of
Wand and Jones (1995:72) for the 2-stage approach with a
normal kernel function, applying the steps separately to the
vectors of x- and y-coordinates of each set of simulated
locations. The plug-in and STE methods required estimates
ofmultiple kernel functionals of the formwi¼

R
f (i )(x) f (x)dx,

where f (i )(x) is the i th derivative of the true density f (x). First,
we estimated w8 with a simple estimate based on the
bandwidth that would be optimal for normal data, producing
ŵNS
8 ¼ 105

32p0:5ðr̂Þ9 ; where r̂ is the square root of the variance of
the data vector, a scale estimate. We used this normal-scale
functional to estimate the first-stage bandwidth:

g1 ¼
"2K ð6Þð0Þ

ŵ
NS
8 n

" #1=9

where K(6)(0) is the 6th derivative of the standard normal
density function evaluated at 0, and n is the number of
locat ions. Next , we used g1 to estimate ŵ6 ¼
n"2

Pn
i¼1

Pn
j¼1 K

ð6Þ
g1 ðxi " xjÞ. We calculated this estimate as

the sixth derivative of the normal kernel function K evaluated
at each pairwise difference among the x- or y-vector elements.
This was a kernel estimator with bandwidth g1.We estimated
the optimal second-stage bandwidth:

g2 ¼
"2K ð4Þð0Þ

ŵ6n

" #1=7

:

We used this bandwidth to estimate the functional ŵ4 ¼
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n"2
Pn

i¼1

Pn
j¼1 K

ð4Þ
g2 ðxi " xjÞ. Finally, we calculated the

plug-in bandwidth estimate:

hPI ¼
1

2
ffiffi
p

p

ŵ4n

" #0:20

:

Because we were applying this univariate method to each
coordinate of bivariate data, we transformed this estimate,
using h0PI ¼ (hPI)

5/6.

Solve-the-Equation
For the STE approach, we first calculated preliminary
estimates of 2 functionals (Wand and Jones 1995:74–75):
ŵNS
8 ¼ 105

32p0:5ðr̂Þ9
and ŵNS

6 ¼ "15
16p0:5ðr̂Þ7

. We then calculated

intermediate bandwidths, again with a normal kernel:

g1¼
"2K ð4Þð0Þ

ŵ
NS
6 n

" #1=7

and

g2¼
"2K ð6Þð0Þ

ŵ
NS
8 n

" #1=9

:

We estimated the functionals w4 and w6 with bandwidths g1
and g2 following the same steps used for the univariate plug-
in approach. The remaining step required a function of the
final bandwidth h:

cðhÞ ¼ 2K ð4Þð0Þŵ4

"ðŵ6Þ 1
2
ffiffi
p

p

" #1=7

h5=7:

The bandwidth h was the solution to the function

hSTE ¼

1

2
ffiffiffi
p

p

n"1
Pn

i¼1

Pn
j¼1 K

ð4Þ
cðhSTEÞðxi " xjÞ

$ %

2

664

3

775

0:20

:

We used an iterative search to find hSTE, with the search
halting when successive iterations changed the estimated
bandwidth by , 1%. As with the univariate plug-in, we
transformed this estimate, using h0STE¼ (hSTE)

5/6.

Bivariate Plug-In
The bivariate plug-in method followed the same steps as the
univariate approach. However, the bivariate kernel func-
tionals were more complex because they required partial
derivates of the density and standard bivariate normal
kernel. We used the following steps (Wand and Jones 1994):

1) We standardized the bivariate location data with original
standard deviation (r̂x, r̂y) to have r̂ ¼ 1 for both

coordinates. We calculated the correlation coefficient
between the standardized x- and y-vectors, q.

2) We calculated quick estimates of kernel functionals wNS
8;0,

wNS
0;8; w

NS
6;2; w

NS
2;6; w

NS
4;4 based on the normal-scale ap-

proach:

wNS
m1;m2

¼ "1ð Þðm1þm2Þ=2km1m2

2ðm1þm2þ4Þ=2p 1" q2ð Þ m1þm2þ1Þ=2ð

where

k2r;2s ¼
ð2rÞ!ð2sÞ!

2rþs

Xminðr;sÞ

j¼0

ð2qÞ2j

ðr " jÞ!ðs " jÞ!ð2jÞ!
:

3) We used the normal-scale functionals to calculate the
stage-1 bandwidth values (a6,0, a0,6, a4,2, a2,4):

am1;m2 ¼
"2K ðm1;m2Þð0Þ

wNS
ðm1þ2;m2Þ þ wNS

ðm1;m2þ2Þ

$ %
n

2

4

3

5

1
4þm1þm2ð Þ

where

K ðm1;m2Þð0Þ ¼ ð"1Þm1þm2wNS
m1;m2

ð0:5Þ:

4) We used these bandwidths to estimate kernel functionals
w6 , 0 , w0 , 6 , w4 , 2 , w2 , 4 : ŵm1;m2¼n"2

Pn
i¼1

Pn
j¼1

K ðm1;m2Þ
am1 ;m2

xi"xj ; yi" yj
& '

: This formula denotes that we
plugged all pair-wise differences among the standardized
set of locations into the (m1, m2) partial derivative of the
bivariate normal kernel function evaluatedwith bandwidth
am1;m2 .

5) We used these functional estimates to calculate the stage-
2 bandwidth values (a4,0, a0,4, a2,2) and then functional
estimates w4,0, w0,4, and w2,2, with the equations used in
3) and 4), using wm1;m2

in place of wNS
m1;m2

.
6) We plugged these functional estimates into the equation

for (h1,h2):

h1 ¼
ðw0;4Þ

0:75ð 1
4pÞ

ðw4;0Þ
0:75 ðw4;0Þ

0:5ðw0;4Þ
0:5 þ w2;2

h i
n

2

4

3

5

1
6

and

h2 ¼ h1ðw4;0=w0;4Þ
0:25:

Finally, we transformed these values back to the original
scale of the location data: ðh1; h2Þ ¼ ðr̂xh1; r̂yh2Þ.
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